Investigating current challenges and bottlenecks in power flow analysis for large-scale electrical distribution grids
Applying machine learning / AI or surrogate modeling (e.g., neural networks, graph neural networks, physics-informed machine learning) to approximate power flow results
Training models using simulation results generated from conventional power flow solvers
Evaluating AI-based approximators in terms of accuracy, generalization, and computational speed
Integrating models with the existing synthetic grid package
Optionally, contributing to writing a scientific paper on AI-enhanced grid simulations
Required qualifications:
Desirable qualifications:
Stellenmerkmale
Dein Beschäftigungsumfang
Teilzeit (befristet)
Dein Gehalt
Nach Vereinbarung
Dein Arbeitsplatz:
z.T. im Homeoffice
Dein Büro:
Jülich, Nordrhein-Westfalen, Deutschland
Ansprechpartner:in
Bei Fragen
Forschungszentrum Jülich GmbH
Website
externer Link